
How the Camel!
is de-cocooning

Elizabeth Mattijsen!
YAPC::NA, 23 June 2014

The Inspiration

coccoon?

Perl 5 Recap: 2000 - 2010

• 2000 - Perl 5.6

• 2002 - Perl 5.8

• 2007 - Perl 5.10

• 2010 - Perl 5.12 + yearly release

• The lean years have passed!

• Camel Herders Meeting / Request for Comments

• Apocalypses, Exegeses, Synopses

• Parrot as a VM for everybody

• Pugs (on Haskell) / Perl 6 test-suite

• Rakudo (on Parrot) / Niecza (on mono/.NET)

• Nothing “Production Ready”

Perl 6 Recap: 2000 - 2010

The 0’s - Cocooning Years

• Perl was busy with itself

• Redefining itself

• Re-inventing itself

• What is Perl ?

• These years have passed!

Not your normal de-cocooning

Perl 5 and Perl 6 will co-exist
for a long time to come!

Perl 5 in the 10’s
• A new release every year!

• Many optimisations, internal code cleanup!

• Perl 6-like features: say, state, given/when, ~~, //,
…, package {}, lexical subs, sub signatures

• Perl 6-like Modules: Moose / Moo / Mouse,
Method::Signatures, Promises

• and a Monthly development release

5.20 is out!!
Go get it!

and use it!

Perl 6 in the 10’s
• Niecza more feature-complete, initially

• Not Quite Perl (NQP) developed and stand-alone

• 6model on NQP with multiple backends

• MoarVM - a Virtual Machine for Perl 6

• Rakudo runs on Parrot, JVM, MoarVM

• also a Monthly development release

Co-existence? Yes!

But Perl 6 will become larger
and be more future proof!

Cool Perl 6 features in Perl 5
• say

• yada yada yada (…)

• state variables

• defined-or (//)!

• lexical subs

• subroutine signatures

• OK as long as it doesn’t involve types

print "Foo\n";
Foo
!

say "Foo";
Foo

print "Foo\n";
Foo !
say "Foo";
Foo

print "Foo\n";
Foo
!
say "Foo";
Foo

print "Foo\n";
Foo
!

say "Foo";
Foo

sub a { ... }; a();
Unimplemented at -e line 1
!

my $a = …;
syntax error at -e line 1, near "= ..."

sub a { ... }; a();
Stub code executed !
my $a = ...; say $a.WHAT; say $a;
(Failure)
===SORRY!===
Stub code executed

sub a { ... }; a();
Stub code executed
!

my $a = ...; say $a.WHAT; say $a;
(Failure)
===SORRY!===
Stub code executed

sub a { ... }; a();
Unimplemented at -e line 1
!
my $a = …;
syntax error at -e line 1, near "= ..."

sub a { state $x = 10; ++$x }; say a for 0..9;
11
12
13
14
15
16
17
18
19
20

sub a { state $x = 10; ++$x } say a for 0..^10;
11
12
13
14
15
16
17
18
19
20

sub a { state $x = 10; ++$x }; say a for 0..9;
11
12
13
14
15
16
17
18
19
20

sub a { state $x = 10; ++$x } say a for 0..^10;
11
12
13
14
15
16
17
18
19
20

my $a; my $b = 42;
say $a // $b; say $a || $b;
42
42
!
my $a = 0; my $b = 42;
say $a // $b; say $a || $b;
0
42

my $a; my $b = 42;
say $a // $b; say $a || $b;
42
42 !
my $a = 0; my $b = 42; 
say $a // $b; say $a || $b;
0
42

my $a; my $b = 42;
say $a // $b; say $a || $b;
42
42
!
my $a = 0; my $b = 42;
say $a // $b; say $a || $b;
0
42

my $a; my $b = 42;
say $a // $b; say $a || $b;
42
42
!

my $a = 0; my $b = 42; 
say $a // $b; say $a || $b;
0
42

{ my sub a { say "foo" }; a() }; a();
foo
Undefined subroutine &main::a called at -e line 1.
!

say "foo"; a();
foo
Undefined subroutine &main::a called at -e line 1.

{ sub a { say "foo" }; a() }; a();
===SORRY!=== Error while compiling -e
Undeclared routine:
 a used at line 1 !
say "foo"; a();
===SORRY!=== Error while compiling -e
Undeclared routine:
 a used at line 1

{ my sub a { say "foo" }; a() }; a();
foo
Undefined subroutine &main::a called at -e line 1.
!
say "foo"; a();
foo
Undefined subroutine &main::a called at -e line 1.

{ sub a { say "foo" }; a() }; a();
===SORRY!=== Error while compiling -e
Undeclared routine:
 a used at line 1
!

say "foo"; a();
===SORRY!=== Error while compiling -e
Undeclared routine:
 a used at line 1

sub a ($f, %n) { say $f; say %n };
a("bar", a => 1, b => 2);
bar
b2a1
!

sub a ($f, %n) { say $f; say %n; say @_ };
a("bar", a => 1, b => 2);
bar
b2a1
barb2a1

sub a ($f, *%n) { say $f; say %n };
a("bar", a => 1, :b<2>);
bar
("a" => 1, "b" => 2).hash !
sub a ($f, *%n) { say $f; say %n; say @_ };
a("bar", a => 1, b => 2);
===SORRY!=== Error while compiling -e
Placeholder variable '@_' cannot override existing signature
at -e:1
------> b a ($f, *%n) { say $f; say %n; say @_ }⏏; a("b

sub a ($f, %n) { say $f; say %n };
a("bar", a => 1, b => 2);
bar
b2a1
!
sub a ($f, %n) { say $f; say %n; say @_ };
a("bar", a => 1, b => 2);
bar
b2a1
barb2a1

sub a ($f, *%n) { say $f; say %n };
a("bar", a => 1, :b<2>);
bar
("a" => 1, "b" => 2).hash
!
sub a ($f, *%n) { say $f; say %n; say @_ };
a("bar", a => 1, b => 2);
===SORRY!=== Error while compiling -e
Placeholder variable '@_' cannot override existing signature
at -e:1
------> b a ($f, *%n) { say $f; say %n; say @_ }⏏; a("b

Problematic Perl 6 features
in Perl 5

• Standard async still dependent on ithreads

• Promises specific event loop dependent

• Smart match to be experimental / deprecated!

• Subroutine signatures limited and only syntactic sugar

• Bolting on stuff later stays difficult

Perl 5 - Standard async
• Since 5.8 we have ithreads

• Which suffers from a flawed implementation

• But for which there is no real alternative

• Using fork() emulation intended for Windows

• Officially discouraged since 5.20

• Maybe forks.pm qualifies as an alternative

• Still, programming threads reliably is superhuman

!

!

!

!

"Debugging is twice as hard as writing the code
in the first place. Therefore, if you write the code
as cleverly as possible, you are, by definition,
not smart enough to debug it.”

--Brian Kernighan

!

!

!

!

Perl 5 - Promises
• Asynchronicity for non-superhumans

• Only available as a CPAN module

• Needs an event loop

• Cannot usually have more than one event loop

• Probably not really asynchronous

Perl 5 - Smart match
• You need typing for smart match to make sense

• Perl 5 will most likely never have typing

• Only of limited usefulness and source of confusion

• Hence marked experimental again

• And potentially deprecated in the future

Perl 5 - Subroutine signatures

• Just arrived with perl 5.20!

• Alas, syntactic sugar only

• And no real named parameters

• In Perl 6, part of multi-method dispatch

• Nice to have nonetheless!

sub a (:$name = "You") { say "Hey, $name!" };
a; a :name<Orlando>;
Hey, You!
Hey, Orlando!

say (name=>"Orlando").WHAT;
(Pair)
say (name=>"Orlando").perl;
"name" => "Orlando"
say :name<Orlando>.WHAT;
(Pair)
say :name<Orlando>.perl;
"name" => "Orlando"

multi a (Num $n) { say "Number $n" };
multi a (Str $a) { say "String $a" };
a(42); a("foo");
Number 42
String foo

my $a = "foo"; say $a;
foo
my Num $a = "foo"; say $a;
Type check failed in assignment to '$a'; expected 'Num' but got ‘Str' in
block at -e:1
my Str $a = "foo"; say $a;
foo

Perl 5 features in Perl 6

• “use v5”

• It stays hard to integrate / mimic the indescribable

use v5
• By TimToady, maintained by FROGGS (Tobias Leich)

• Re-implement Perl 5 just like Rakudo Perl 6

• Grammar / Action based, as a “slang”

• No XS (at least not as we know it)

• Call Perl 5 code from Perl 6 and vice-versa

• Now passes ~10% of Perl 5 test-suite

• Part of next Rakudo Star distribution!

Needed for Perl 6 adoption

• A good introduction (e)book

• More modules, CPAN support

• Better performance

A good introduction (e)book

• Rumour has it a certain someone is working on that

• Don’t let that stop you from writing your own!

• Or just blog about your experiences

• And let us know that you did!

More modules - CPAN support

• Can already upload Perl distributions to CPAN

• Can find distributions on CPAN

• Install from CPAN really soon with panda

• Effort to start porting CPAN module later this year

Better performance
• MoarVM is now standalone

• Performance on MoarVM creeping towards Perl 5

• Startup Perl 5 + Moose about same as Perl 6

• Code introspection for optimization built-in

• GSoC project to develop JIT for MoarVM underway

• First JITted code execution already seen!

Why use Perl 6 in production?

• Saner implicit/explicit multi-core programming

• Channels, Promises, Supplies…

• No versioning issues with modules

• Cool features = happier programmers

use Test; ok 42,"foo";
ok 1 - foo

{ use Test }; ok 42,"foo";
===SORRY!=== Error while compiling -e
Undeclared routine:
 ok used at line 1. Did you mean 'on'?

for ^10 { rand.sleep; .print };
0123456789
real	 0m5.486s
user	 0m0.259s
sys	 0m0.051s

await do for ^10 { start { rand.sleep; .print } };
6783524091
real	 0m1.217s
user	 0m0.260s
sys	 0m0.051s

my $a = 1|2|3; say $a;
any(1,2,3)
my $a = 1|2|3; say $a == 1;
any(True, False, False)
my $a = any(1..3); say so $a == 1;
True
say (0..^100).pick;
71
my $a = any(^100); say so $a == (^100).pick;
True
my $a = any(^100); say so $a == (^1000).pick;
True
my $a = any(^100); say so $a == (^1000).pick;
False

How to try Perl 6
(as a user)

• Rakudo with plenty of modules to try

• Next version will have v5 most likely

• http://rakudo.org/downloads/star

http://rakudo.org/downloads/star

How to try Perl 6
(as a tester)

• The Rakudo equivalent of perlbrew:

• https://github.com/tadzik/rakudobrew

https://github.com/tadzik/rakudobrew

How to try Perl 6
(as a contributor)

• mkdir foo && cd foo

• git clone https://github.com/rakudo/rakudo.git

• cd rakudo

• perl Configure.pl —gen-moar

• make install

• install/bin/perl6 -v

https://github.com/rakudo/rakudo.git

Examples?
• Rosetta Code

• http://perl6.org/community/rosettacode

• Perl 6 Advent Calendar

• https://perl6advent.wordpress.com

• Jonathan Worthington’s presentations with examples

• http://jnthn.net/articles.shtml

http://perl6.org/community/rosettacode
https://perl6advent.wordpress.com
http://jnthn.net/articles.shtml

Support?

• fine folks of the #perl6 channel on irc.freenode.org

• blogs: http://planeteria.org/perl6/

• from Perl 5: http://perlgeek.de/en/article/5-to-6

• the nitty gritty: http://perlcabal.org/syn/

http://irc.freenode.org
http://planeteria.org/perl6/
http://perlgeek.de/en/article/5-to-6
http://perlcabal.org/syn/

How the Camel is de-cocooning

Elizabeth Mattijsen
YAPC::NA, 23 June 2014

Questions?

Thank You!!
for the White Camel

